Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Sujet Principal
Gamme d'année
1.
Buildings ; 13(4):919, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2294825

Résumé

Plastic waste causes severe environmental impacts worldwide and threatens the lives of all creatures. In the medical field, most of the equipment, especially personal protective equipment (PPE), is made from single-use plastic. During COVID-19, the usage of PPE has increased, and is disposed of in landfills after being used once. Worldwide, millions of tons of waste syringes are generated from COVID-19 vaccination. A practical alternative to utilizing this waste is recycling it to reinforce building materials. This research introduces an approach to using COVID-19 syringe plastic waste to reinforce building material as composite concrete. Reinforced fiber polymer (FRP) concrete materials were used to mold cylindrical specimens, which underwent mechanical tests for mechanical properties. This study used four compositions with 0%, 5%, 10%, and 15% of FRP to create cylindrical samples for optimum results. Sequential mechanical tests were carried out on the created samples. These specimens were cured for a long period to obtain water absorption capability. After several investigations, the highest tensile and compressive strengths, approximately 2.0 MPa and 10.5 MPa, were found for the 5% FRP composition samples. From the curing test, the lowest water absorbability of around 5% was found for the 5% FRP composition samples.

2.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-36439.v2

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses serious threats to the global public health and leads to an unprecedented worldwide crisis. Unfortunately, no effective drugs or vaccines are available till now. Since the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a promising therapeutic target, a deep learning and molecular simulation based hybrid drug screening procedure was proposed and applied to identify potential drug candidates targeting RdRp from 1906 approved drugs. Among the four selected FDA-approved drug candidates, Pralatrexate and Azithromycin were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 0.008µM and 9.453 µM, respectively. For the first time, our study discovered that Pralatrexate is able to potently inhibit SARS-CoV-2 replication with a stronger inhibitory activity than Remdesivir within the same experimental conditions. The paper demonstrates the feasibility of accurate virtual drug screening for inhibitors of SARS-CoV-2 and provides potential therapeutic agents against COVID-19.


Sujets)
COVID-19
3.
preprints.org; 2020.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202002.0061.v1

Résumé

A novel coronavirus called 2019-nCoV was recently found in Wuhan, Hubei Province of China, and now is spreading across China and other parts of the world. 2019-nCoV spreads more rapidly than SARS-CoV. Unfortunately, there is no drug to combat the virus. It is of high significance to develop a drug that can combat the virus effectively before the situation gets worse. It usually takes a much longer time to develop a drug using traditional methods. For 2019-nCoV, it is now better to rely on some alternative methods to develop drugs that can combat such a disease effectively since 2019-nCoV is highly homologous to SARS-CoV. In this paper, we first collected virus RNA sequences from the GISAID database, translated the RNA sequences into protein sequences, and built a protein 3D model using homology modeling. Coronavirus main protease is considered to be a major therapeutic target, thus this paper focused on drug screening based on the modeled 2019-nCov_main_protease structure. The deep learning based method DFCNN, developed by our group, can identify/rank the protein-ligand interactions with relatively high accuracy. DFCNN is capable of performing virtual screening quickly since no docking or molecular dynamic simulation is needed. DFCNN identifies potential drugs for 2019-nCoV protease by performing drug screening against 4 chemical compound databases. Also, we performed drug screening for all tripeptides against the binding site of 2019-nCov_main_protease since peptides often show better stability, more bio-availability and negligible immune responses. In the end, we provided the list of possible chemical ligands and peptide drugs for experimental validation.

SÉLECTION CITATIONS
Détails de la recherche